W. P. Carey School of Business, Arizona State University
Abstract:We address dynamic manipulation of deformable linear objects by presenting SPiD, a physics-informed self-supervised learning framework that couples an accurate deformable object model with an augmented self-supervised training strategy. On the modeling side, we extend a mass-spring model to more accurately capture object dynamics while remaining lightweight enough for high-throughput rollouts during self-supervised learning. On the learning side, we train a neural controller using a task-oriented cost, enabling end-to-end optimization through interaction with the differentiable object model. In addition, we propose a self-supervised DAgger variant that detects distribution shift during deployment and performs offline self-correction to further enhance robustness without expert supervision. We evaluate our method primarily on the rope stabilization task, where a robot must bring a swinging rope to rest as quickly and smoothly as possible. Extensive experiments in both simulation and the real world demonstrate that the proposed controller achieves fast and smooth rope stabilization, generalizing across unseen initial states, rope lengths, masses, non-uniform mass distributions, and external disturbances. Additionally, we develop an affordable markerless rope perception method and demonstrate that our controller maintains performance with noisy and low-frequency state updates. Furthermore, we demonstrate the generality of the framework by extending it to the rope trajectory tracking task. Overall, SPiD offers a data-efficient, robust, and physically grounded framework for dynamic manipulation of deformable linear objects, featuring strong sim-to-real generalization.
Abstract:Recent advances in large vision-language models (VLMs) have demonstrated generalizable open-vocabulary perception and reasoning, yet their real-robot manipulation capability remains unclear for long-horizon, closed-loop execution in unstructured, in-the-wild environments. Prior VLM-based manipulation pipelines are difficult to compare across different research groups' setups, and many evaluations rely on simulation, privileged state, or specially designed setups. We present AgenticLab, a model-agnostic robot agent platform and benchmark for open-world manipulation. AgenticLab provides a closed-loop agent pipeline for perception, task decomposition, online verification, and replanning. Using AgenticLab, we benchmark state-of-the-art VLM-based agents on real-robot tasks in unstructured environments. Our benchmark reveals several failure modes that offline vision-language tests (e.g., VQA and static image understanding) fail to capture, including breakdowns in multi-step grounding consistency, object grounding under occlusion and scene changes, and insufficient spatial reasoning for reliable manipulation. We will release the full hardware and software stack to support reproducible evaluation and accelerate research on general-purpose robot agents.
Abstract:Vector quantization (VQ) underpins modern generative and representation models by turning continuous latents into discrete tokens. Yet hard nearest-neighbor assignments are non-differentiable and are typically optimized with heuristic straight-through estimators, which couple the update step size to the quantization gap and train each code in isolation, leading to unstable gradients and severe codebook under-utilization at scale. In this paper, we introduce GRIT-VQ (Generalized Radius and Integrated Transform-Vector Quantization), a unified surrogate framework that keeps hard assignments in the forward pass while making VQ fully differentiable. GRIT-VQ replaces the straight-through estimator with a radius-based update that moves latents along the quantization direction with a controllable, geometry-aware step, and applies a data-agnostic integrated transform to the codebook so that all codes are updated through shared parameters instead of independently. Our theoretical analysis clarifies the fundamental optimization dynamics introduced by GRIT-VQ, establishing conditions for stable gradient flow, coordinated codebook evolution, and reliable avoidance of collapse across a broad family of quantizers. Across image reconstruction, image generation, and recommendation tokenization benchmarks, GRIT-VQ consistently improves reconstruction error, generative quality, and recommendation accuracy while substantially increasing codebook utilization compared to existing VQ variants.
Abstract:Large language models (LLMs) have achieved remarkable progress in code generation, yet their potential for software protection remains largely untapped. Reverse engineering continues to threaten software security, while traditional virtual machine protection (VMP) relies on rigid, rule-based transformations that are costly to design and vulnerable to automated analysis. In this work, we present the first protection-aware framework that learns robust representations of VMP-protected code. Our approach builds large-scale paired datasets of source code and normalized VM implementations, and introduces hierarchical dependency modeling at intra-, preceding-, and inter-instruction levels. We jointly optimize language modeling with functionality-aware and protection-aware contrastive objectives to capture both semantic equivalence and protection strength. To further assess resilience, we propose a protection effectiveness optimization task that quantifies and ranks different VM variants derived from the same source. Coupled with a two-stage continual pre-training and fine-tuning pipeline, our method enables models to generate, compare, and reason over protected code. Extensive experiments show that our framework significantly improves robustness across diverse protection levels, opening a new research direction for learning-based software defense. In this work, we present ShieldedCode, the first protection-aware framework that learns robust representations of VMP-protected code. Our method achieves 26.95% Pass@1 on L0 VM code generation compared to 22.58% for GPT-4o., and improves binary similarity detection Recall@1 by 10% over state of art methods like jTrans.
Abstract:In the era of explosive growth in academic literature, the burden of literature review on scholars are increasing. Proactively recommending academic papers that align with scholars' literature needs in the research process has become one of the crucial pathways to enhance research efficiency and stimulate innovative thinking. Current academic paper recommendation systems primarily focus on broad and coarse-grained suggestions based on general topic or field similarities. While these systems effectively identify related literature, they fall short in addressing scholars' more specific and fine-grained needs, such as locating papers that utilize particular research methods, or tackle distinct research tasks within the same topic. To meet the diverse and specific literature needs of scholars in the research process, this paper proposes a novel academic paper recommendation method. This approach embeds multidimensional information by integrating new types of fine-grained knowledge entities, title and abstract of document, and citation data. Recommendations are then generated by calculating the similarity between combined paper vectors. The proposed recommendation method was evaluated using the STM-KG dataset, a knowledge graph that incorporates scientific concepts derived from papers across ten distinct domains. The experimental results indicate that our method outperforms baseline models, achieving an average precision of 27.3% among the top 50 recommendations. This represents an improvement of 6.7% over existing approaches.
Abstract:We propose a CompliantVLA-adaptor that augments the state-of-the-art Vision-Language-Action (VLA) models with vision-language model (VLM)-informed context-aware variable impedance control (VIC) to improve the safety and effectiveness of contact-rich robotic manipulation tasks. Existing VLA systems (e.g., RDT, Pi0, OpenVLA-oft) typically output position, but lack force-aware adaptation, leading to unsafe or failed interactions in physical tasks involving contact, compliance, or uncertainty. In the proposed CompliantVLA-adaptor, a VLM interprets task context from images and natural language to adapt the stiffness and damping parameters of a VIC controller. These parameters are further regulated using real-time force/torque feedback to ensure interaction forces remain within safe thresholds. We demonstrate that our method outperforms the VLA baselines on a suite of complex contact-rich tasks, both in simulation and on real hardware, with improved success rates and reduced force violations. The overall success rate across all tasks increases from 9.86\% to 17.29\%, presenting a promising path towards safe contact-rich manipulation using VLAs. We release our code, prompts, and force-torque-impedance-scenario context datasets at https://sites.google.com/view/compliantvla.
Abstract:The influence of gender diversity on the success of scientific teams is of great interest to academia. However, prior findings remain inconsistent, and most studies operationalize diversity in aggregate terms, overlooking internal role differentiation. This limitation obscures a more nuanced understanding of how gender diversity shapes team impact. In particular, the effect of gender diversity across different team roles remains poorly understood. To this end, we define a scientific team as all coauthors of a paper and measure team impact through five-year citation counts. Using author contribution statements, we classified members into leadership and support roles. Drawing on more than 130,000 papers from PLOS journals, most of which are in biomedical-related disciplines, we employed multivariable regression to examine the association between gender diversity in these roles and team impact. Furthermore, we apply a threshold regression model to investigate how team size moderates this relationship. The results show that (1) the relationship between gender diversity and team impact follows an inverted U-shape for both leadership and support groups; (2) teams with an all-female leadership group and an all-male support group achieve higher impact than other team types. Interestingly, (3) the effect of leadership-group gender diversity is significantly negative for small teams but becomes positive and statistically insignificant in large teams. In contrast, the estimates for support-group gender diversity remain significant and positive, regardless of team size.
Abstract:Recent strides in video generation have paved the way for unified audio-visual generation. In this work, we present Seedance 1.5 pro, a foundational model engineered specifically for native, joint audio-video generation. Leveraging a dual-branch Diffusion Transformer architecture, the model integrates a cross-modal joint module with a specialized multi-stage data pipeline, achieving exceptional audio-visual synchronization and superior generation quality. To ensure practical utility, we implement meticulous post-training optimizations, including Supervised Fine-Tuning (SFT) on high-quality datasets and Reinforcement Learning from Human Feedback (RLHF) with multi-dimensional reward models. Furthermore, we introduce an acceleration framework that boosts inference speed by over 10X. Seedance 1.5 pro distinguishes itself through precise multilingual and dialect lip-syncing, dynamic cinematic camera control, and enhanced narrative coherence, positioning it as a robust engine for professional-grade content creation. Seedance 1.5 pro is now accessible on Volcano Engine at https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?type=GenVideo.
Abstract:Contact-rich tasks pose significant challenges for robotic systems due to inherent uncertainty, complex dynamics, and the high risk of damage during interaction. Recent advances in learning-based control have shown great potential in enabling robots to acquire and generalize complex manipulation skills in such environments, but ensuring safety, both during exploration and execution, remains a critical bottleneck for reliable real-world deployment. This survey provides a comprehensive overview of safe learning-based methods for robot contact-rich tasks. We categorize existing approaches into two main domains: safe exploration and safe execution. We review key techniques, including constrained reinforcement learning, risk-sensitive optimization, uncertainty-aware modeling, control barrier functions, and model predictive safety shields, and highlight how these methods incorporate prior knowledge, task structure, and online adaptation to balance safety and efficiency. A particular emphasis of this survey is on how these safe learning principles extend to and interact with emerging robotic foundation models, especially vision-language models (VLMs) and vision-language-action models (VLAs), which unify perception, language, and control for contact-rich manipulation. We discuss both the new safety opportunities enabled by VLM/VLA-based methods, such as language-level specification of constraints and multimodal grounding of safety signals, and the amplified risks and evaluation challenges they introduce. Finally, we outline current limitations and promising future directions toward deploying reliable, safety-aligned, and foundation-model-enabled robots in complex contact-rich environments. More details and materials are available at our \href{ https://github.com/jack-sherman01/Awesome-Learning4Safe-Contact-rich-tasks}{Project GitHub Repository}.
Abstract:Handwritten signature verification is a crucial aspect of identity authentication, with applications in various domains such as finance and e-commerce. However, achieving high accuracy in signature verification remains challenging due to intra-user variability and the risk of forgery. This paper introduces a novel approach for dynamic signature verification: the Temporal-Spatial Graph Attention Transformer (TS-GATR). TS-GATR combines the Graph Attention Network (GAT) and the Gated Recurrent Unit (GRU) to model both spatial and temporal dependencies in signature data. TS-GATR enhances verification performance by representing signatures as graphs, where each node captures dynamic features (e.g. position, velocity, pressure), and by using attention mechanisms to model their complex relationships. The proposed method further employs a Dual-Graph Attention Transformer (DGATR) module, which utilizes k-step and k-nearest neighbor adjacency graphs to model local and global spatial features, respectively. To capture long-term temporal dependencies, the model integrates GRU, thereby enhancing its ability to learn dynamic features during signature verification. Comprehensive experiments conducted on benchmark datasets such as MSDS and DeepSignDB show that TS-GATR surpasses current state-of-the-art approaches, consistently achieving lower Equal Error Rates (EER) across various scenarios.